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Truly monodisperse particles or polymers are rare. Examples of such systems, where all con-
stituents are molecularly identical, are clusters of relatively small number of atoms (e.g., buck-
minsterfullerene) or proteins with a well-defined sequence of amino acids. Typically, however,
colloidal particles, nanoparticles, polymers, or biomacromolecules are polydisperse, meaning that
in a sample one finds a distribution of similar objects, which vary in size and mass, possibly in
shape [1]. When the systems are composed of one type of material, they are often referred to as
homogeneous, while systems containing different types of materials called heterogeneous. One
may discuss size distributions in the latter systems as well. These notions are illustrated in the
figure below.
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Size distributions can be relatively narrow, and in such situations one may neglect polydis-
persity effects to a first approximation. Various types of particles can be fabricated in close to
spherical shape and with small degree of polydispersity (e.g., latex, silica, gold). Various types
of polymers with low polydispersity can be synthesized as well (e.g., polystyrene) [2]. More fre-
quently, however, size distributions have a finite width, and can be extremely wide, sometimes
covering many orders of magnitude in size or mass. In such cases, various system properties are
dominated by polydispersity effects. Such systems can be heterogeneous too. Naturally occurring
particles or polymers often fall into that class (e.g., dust, soil, polysaccharides, humic substances)
[3,4]. While this essay only focusses on size distributions of particles and polymers, similar no-
tions can also be used to discuss size distributions of other objects, such as colloidal aggregates,
stones, animals, stars, or galaxies.

Size and mass distributions

Consider homogeneous and spherical (or at least approximatively spheroidal) particles, which
can be characterized by the radius R of an equivalent sphere. In a given size range, there is
certain number of such particles per unit volume, namely n(R)dR in the range of radii R and
R+dR. The total number of particles per unit volume N, which is also referred to as the number
concentration, is given by

N =
∫ ∞

0
n(R)dR
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The corresponding number weighted size distribution can be thus expressed as

p(R)= n(R)
N

This function is a probability distribution as it is normalized to unity by virtue of the relation
given further above. A similar probability distribution can also be introduced for non-spherical
objects, whereby one defines its radius in terms of the radius of an equivalent sphere with the
same volume. For strongly non-spherical objects (e.g., rods, platelets) one should rather consider
multi-variate distributions of the different object dimensions (e.g., length, width, thickness). That
scenario can be relevant, but will not be discussed here.

The (molar) mass of polymers is more easily measured than its size, and for this reason one
rather refers to mass distributions. In analogy to the above definition, one discusses the number
of such particles in a given mass range, namely n′(M)dM in the range of masses between M and
M+dM. As a consequence, one may introduce a number weighted mass distribution denoted by

q(M)= n′(M)
N

For spherical particles, their mass and radius are obviously related through the density of the
particle. A similar relation also applies for other objects, and thus we consider

M = KRd

For compact objects, d = 3 and the constant K depends on the density and shape. For polymers or
colloidal aggregates, however, the exponent can assume non-integer values (d < 3). Such objects
are referred to as mass fractals, and the exponent d as the mass fractal dimension. Few relevant
values of these exponents are given in the table below. Particle aggregates are also mass frac-
tals, and their fractal dimension depends whether one deals with rapid diffusion limited colloidal
aggregation (DLCA) or slow reaction limited colloidal aggregation (RLCA) [5].

Object d
Polymers in good solvent 1.7
DLCA particle aggregates 1.9
Polymers in θ-solvent 2.0
RLCA particle aggregates 2.1
Compact object 3.0

For such objects, an equivalent radius must be appropriately defined, for example, through its
gyration radius. From the above relation, one finds that q(M)dM = p(R)dR and thus that q(M)∝
p(R)R/M. The proportionality constant can be found by normalization.

When discussing size distributions, researchers often refer to the mass weighted size distribu-
tion. Thereby, one considers the mass of particles per unit volume M(R)n(R)dR within a given
interval R and R+dR. The resulting probability distribution reads

pα(R)= Rαp(R)∫ ∞
0 Rαp(R)dR

where α= 3 must be used for compact objects. The special feature of particle size distributions is
that one must also be able to normalize the mass weighted distribution, since the sample has a
finite mass. This condition represents a constraint on possible choices of valid size distributions.

For α= 0 the number weighted size distribution is recovered. Other weights can be used. For
example, α = 2 leads to the area weighted size distribution for compact and smooth objects. The
intensity weighted size distribution is sometimes discussed in the interpretation of light scattering
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data and for compact objects it is obtained by setting α= 6. Cumulative size distributions are also
frequently used, which are introduced as the undersize fraction

Pα(R)=
∫ R

0
pα(R′)dR′

or the oversize fraction
Qα(R)= 1−Pα(R)=

∫ ∞

R
pα(R′)dR′

Again, different weights for these cumulative fractions can be used. Similarly, one may consider
the mass weighted mass distribution, which is obtained from

qα(R)= Mαq(M)∫ ∞
0 Mαq(M)dM

by setting α = 1. For α = 0 one obtains the number weighted mass distribution. The condition
of a finite mass translates into the requirement that the mass weighted mass distribution must
be normalizable. The corresponding cumulative mass distributions are less frequently used, but
they could be defined similarly.

Moments and averages

An important characteristics of any probability distribution are their moments. The moments of
order α of the number weighted size distribution are defined by

〈Rα〉 =
∫ ∞

0
Rαp(R)dR

where 〈...〉 denotes the expectation value. Among these moments, the most important ones are
of order one and two. The first moment corresponds to the average radius given by 〈R〉 and it
characterizes the average particle size. The second moment is related to the relative width of
the distribution through the normalized standard deviation ϵR , which is also referred to as the
coefficient of variation or polydispersity, and is normally expressed as

〈R2〉
〈R〉2 = DR = 1+ϵ2

R

This equation also introduces the size polydispersity index DR . We already mentioned the charac-
teristic feature of particle size distributions, namely that its mass weighted distribution must be
normalizable. This condition is equivalent to the condition that the moment 〈Rd〉 is finite.

Similar moments can be defined for the mass distribution. The average mass 〈M〉 is also re-
ferred to as the number weighted average mass denoted as Mn. The condition that mass weighted
mass distribution is normalizable implies that the first moment 〈M〉 must be finite. The poly-
dispersity can be again expressed in terms of the normalized standard deviation ϵM or the mass
polydispersity index DM as

〈M2〉
〈M〉2 = DM = 1+ϵ2

M

In polymer literature, one commonly uses the polydispersity (or dispersity) mass index DM , while
normalized mass standard deviation ϵM is rarely used. This situation is contrary to the particle
literature, where one rather uses the normalized size standard deviation ϵR , while the respective
polydispersity size index DR is not considered. Here we will rather use the relevant normalized
standard deviations.

Clearly, the moments over the mass distribution are related to the ones over the size distribu-
tion, namely

〈Mα〉 = K〈Rαd〉
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In particular, the number weighted average mass becomes

Mn = M(0)
n

〈Rd〉
〈R〉d = M(0)

n

[
1+ d(d−1)

2
ϵ2

R + ...
]

where M(0)
n refers to a monodisperse sample containing only particles or polymers of radius 〈R〉.

The mass polydispersity index becomes

DM = 〈R2d〉
〈Rd〉2 = 1+d2ϵ2

R + ...

The second equation signs are valid for any size distribution with sufficiently small polydispersity
and can be obtained by expanding the arguments in a Taylor series around 〈R〉. Indeed, the
mass polydispersity is larger than the one by size, and for not too polydisperse samples, one has
ϵM = dϵR .

Model distributions

A normal (or Gaussian) distribution is unsuitable to model size or mass distributions. The reason
is that this distribution always yields a finite probability for negative arguments, which is incom-
patible with the fact that the particle radii or masses are always positive. However, this problem
can be remedied by assuming that the logarithm of the radius follows a normal distribution, which
leads to the log-normal distribution [6]

p(R)∝ R−1e−(lnR−µ)2/(2v)

where v = ln(1+ ϵ2
R) and µ = ln〈R〉− v/2. The advantage of this distribution is that its moments

can be simply expressed as
〈Rα〉 = 〈R〉α(1+ϵ2

R)α(α−1)/2

where α is the (possibly fractional) order of the moment. Another suitable size distribution is the
exponential (or Schultz) distribution [7]

p(R)∝ Rν−1e−βR

where β= ν/〈R〉 and ν= 1/ϵ2
R > 0. All its moments can be again evaluated analytically, namely

〈Rα〉 = 〈R〉α · Γ(ν+α)
ναΓ(ν)

where Γ(x) is Euler’s gamma function. Note that the log-normal and exponential distributions
can be approximated by a normal distribution for sufficiently small polydispersities.

Such distributions are illustrated in the figure on the next page. The left panel shows the expo-
nential distribution for an average radius of 10 nm and different size polydispersities. The other
panels show the resulting mass distributions for two different situations. The middle panel shows
the resulting mass distribution for spherical and compact silica particles with M(0)

n = 6567 kg/mol
(d = 3). The left panel shows the analogous situation for polystyrene in tetrahydrofurane, which
is a good solvent with M(0)

n = 100 kg/mol (d = 1.7) [8]. For the polymer, the radius is defined as the
gyration radius. One observes that the mass polydisperties are larger, especially for the compact
particles.

Another relevant size distribution is the power law. This kind of distribution is commonly
written as [3,4]

p(R)∝ R−δ−1
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where δ is referred to as the fragmentation fractal dimension. In this situation, this distribution
cannot be easily normalized, and the particle mass may also diverge. To avoid these problems,
one assumes that this distribution is only valid in a finite range of radii between Rmin and Rmax.
In this case, the moments can be again calculated explicitly. In practical situations, these cut-off
radii may differ by many orders of magnitude. These cut-offs can be also achieved by smooth
functions, for example, by exponential functions or power-laws with different exponents [4].

The undersize and oversize fractions shown on the next page illustrate the special features
of the power distribution. The fragmentation fractal dimension is taken to be δ = 2.7 as is often
the case for size distributions of naturally occurring particles [4]. The cutoff radii are chosen to
be Rmin =1 nm and Rmax =1000 nm. One observes that the largest contribution to the particle
number occurs at Rmin while the one to the particle mass at Rmax. Therefore, entirely different
parts of the size distribution dominate these characteristics.

Once the size distribution is known, the mass distribution q(M) can be easily evaluated. For
the log-normal and power distribution, the mass distributions are again log-normal and power
distributions. Only the respective parameters of the distribution must be modified accordingly.
For the power distribution, in particular, only the exponent is modified as q(M)∝ M−δ/d−1. In the
case of the Schultz distribution, the mass distribution assumes a different functional form, namely
the generalized exponential distribution. However, the exponential distribution can also be used
to model the mass distribution q(M). In that case, one must define the underlying parameters
accordingly.

Characterization techniques

Various experimental techniques can be used to measure the particle size or the (molar) mass. In
the following, the effect of polydispersity on the results from these techniques will be summarized.
On the other hand, no detailed treatment of these techniques will be given, and the reader is
referred to literature [2].

Osmotic pressure measurements extrapolated to low concentrations are often used to mea-
sure the molar mass. The osmotic pressure is proportional to the number concentration, but only
the mass concentration of the particles or polymers is known. The latter is related to the num-
ber weighted (molar) mass, 〈M〉 or Mn, and therefore this quantity can be extracted from this
experiment.

Static light scattering and ultracentrifugation allow the measurement of the mass weighted
(molar) mass or the weight averaged molar mass

Mw = 〈M2〉
〈M〉 = M(0)

w
〈R2d〉

〈Rd〉〈R〉d = M(0)
w

[
1+ d(3d−1)

2
ϵ2

R + ...
]

where M(0)
w refers to a monodisperse sample containing only particles or polymers of radius 〈R〉.
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Given this definition the mass polydispersity index can also be expressed as DM = Mw/Mn. In
static light scattering, the (molar) mass is obtained from the scattering intensity extrapolated to
low concentrations and small scattering angles. In ultracentrifugation, one measures the equi-
librium sedimentation profile by light absorbtion, and from the dependence of the concentration
profile from the distance from the rotation axis, the (molar) mass can be extracted. Note that the
average 〈M3〉/〈M2〉 can also be relevant in ultracentrifugation, provided the concentration mea-
surement was carried out through the refractive index. However, this measurement technique is
hardly used today anymore.

Static light scattering can be also used to measure the gyration radius, which is obtained from
the dependence of the scattering intensity on the scattering angle at small angles. The respective
average for a polydisperse sample is given by

Rg = R(0)
g

( 〈R2d+2〉
〈R2d〉〈R〉2

)1/2

= R(0)
g

(
1+ 4d+1

2
ϵ2

R + ...
)

where R(0)
g is the gyration radius of the respective monodisperse sample. With dynamic light

scattering, one measures the diffusion coefficient, which can be expressed in terms of the hydro-
dynamic radius by means of the Stokes-Einstein relation. In this case, the relevant moments for
a polydisperse sample are

Rh = R(0)
h

〈R2d〉
〈R〉〈R2d−1〉 = R(0)

h

[
1+ (2d−1)ϵ2

R + ...
]

where R(0)
h is the hydrodynamic radius of the monodisperse sample.

Measurements of the viscosity of the polymer solution is another popular way to obtain the
molecular mass of polymers. Thereby, one investigates the Staudinger index (or the intrinsic
viscosity) [η] for different molecular masses, which obeys the power-law relationship [2]

[η]= AMγ
η

where Mη is the viscosity averaged (molar) mass and A is a constant. The exponent γ is actually
related to the mass fractal dimension of the polymer through γ= 3/d−1. The respective average
of the molar mass is given by

Mη =
( 〈Mγ+1〉

〈M〉
)1/γ

= M(0)
η

( 〈R3〉d

〈Rd〉3
)1/(3−d)

= M(0)
η

(
1+ 3d

2
ϵ2

R + ...
)

where M(0)
η refers to a monodisperse sample containing only particles or polymers of radius 〈R〉.

Note that the molar mass cannot be determined by means of the viscosity method for compact
objects (d = 3). However, this limit is well behaved for the averages above.
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Conclusion

The present text serves as a summary of different notions surrounding size and mass distributions
used in literature. While several concepts discussed are often used in different fields individually,
they are all interconnected, and these connections are not always well documented. Particularly,
the relations between the size and mass distributions are worked out here. The present develop-
ments may be helpful to achieve a more unified view of size or mass distributions.
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References

[1] Allen T. (1975) Particle size measurement, Chapman and Hall.

[2] Elias H. G. (1997) Introduction to Polymer Science, VCH Pulishers.

[3] Friedlander S. K. (2000) Smoke, Dust, and Haze, 2nd edition, Oxford University Press.

[4] Wu Q., Borkovec M., Sticher H. (1993) On particle size distributions in soils, Soil Sci. Soc. Am.
J. 57, 883-890.

[5] Sandkuhler P., Lattuada M., Wu H., Sefcik J., Morbidelli M. (2005) Further insights into the
universality of colloidal aggregation, Adv. Colloid Interface Sci. 113, 65-83.

[6] Wikipedia, Log-normal distribution, https://en.wikipedia.org/wiki/Log-normal_distribution

[7] Wikipedia, Exponential distribution, https://en.wikipedia.org/wiki/Exponential_distribution

[8] M. Bhatt, A. M. Jamieson (1989) Configurational dynamics of high molecular weight
polystyrenes in good solvents, Macromolecules, 22, 2724-2730.

7


